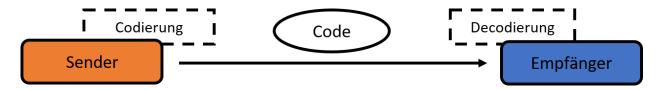
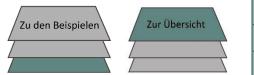
Steuerung und Regelung Stoffund Energieumwandlung individuelle und evolutionäre Entwicklung

Information und Kommunikation

Struktur und Funktion


Basiskonzepte

Information und Kommunikation


Arbeitsteilung bedingt die Notwendigkeit von Kommunikation. Ob es sich um Zellen, Organe oder Organismen handelt, auf allen Ebenen biologischer Systeme ist ein Informationsaustausch notwendig.

Der Informationsaustausch kann mithilfe des Sender-Empfänger-Modells beschrieben werden.

Leitfragen:

- 1. Wer sind Sender, wer Empfänger?
- 2. Worin liegt der Code der Nachricht?
- 3. Welche Information wird gerade verarbeitet?
- 4. Was wird zum Senden/Empfangen der Information benötigt?
- 5. Was kann die Informationsübertragung stören?

((1)) Beispiele

Themen:

- 1. Motorische Endplatte
- 2. Hormonwirkung
- 3. Warum zwitschern Vögel im Frühjahr?
- 4. <u>Spezielle Sinnesleistungen</u>
- 5. <u>Unspezifische Abwehr einer Infektion: Entzündungsreaktion</u>

Motorische Endplatte

Sender: Nervenzelle

Empfänger: Muskelzelle

Code: Neurotransmitter/Acetylcholin

Entleerung der synaptischen Vesikel

Präsynaptische
Membran

Transmitter

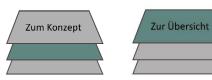
Transmitter-Rezeptor-Bindung

Postsynaptische
Membran

Erstellt von Didaktik der Biologie, LMU München

Übertragene Information: Signal zur Kontraktion

Voraussetzungen:


ACh muss in den Vesikeln vorhanden sein Rezeptoren an der postsynaptischen Membran müssen funktionieren

Störungen:

Curare blockiert die Synapsen an der postsynaptischen Membran. Der Code kann nicht wirken!

https://pixabay.com/de/vectors/wissenschaft-neuron-synapse-305773/

Hormonwirkung

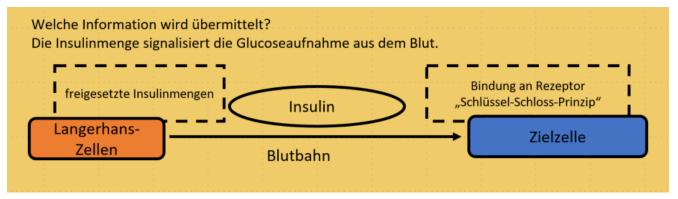
Sender: Langerhanssche Zellen

der Bauchspeicheldrüse *Empfänger:* Muskelzelle

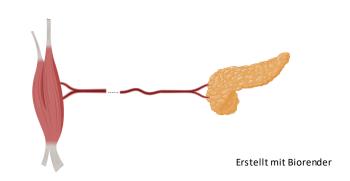
Code: Insulin

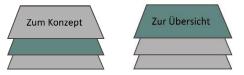
Übertragene Information:

Signal zur Aufnahme von Glucose aus dem Blut


Voraussetzungen:

Die Langerhansschen Zellen müssen funktionieren (Insulin produzieren und abgeben können).

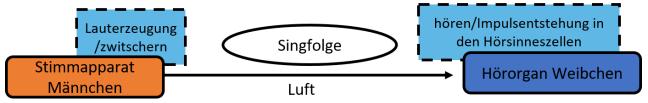

Die Muskelzelle muss für Glucose durchlässig sein (Insulinrezeptoren müssen vorhanden sein).


Störungen:

Langerhanssche Zellen produzieren nichts (Typ I Diabetes)
Mangel an Insulinrezeptoren an den Zielzellen (Typ II Diabetes)

Erstellt von Didaktik der Biologie, LMU München

Warum zwitschern Vögel im Frühjahr?


Sender: Vogelmännchen

Empfänger: Vogelweibchen

Code: Singfolge/Gefieder

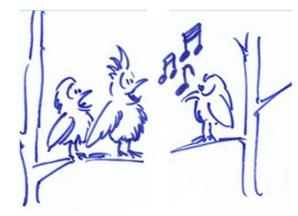
Welche Information wird übermittelt?

Das Männchen signalisiert seine körperliche Konstitution.

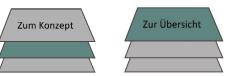
Erstellt von Didaktik der Biologie, LMU München

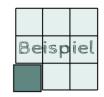
Übertragene Information: Körperliche Konstitution und

Paarungsbereitschaft


Voraussetzungen:

Zum Senden benötigt der Vogel einen Stimmapparat und zum Empfangen eine Hörorgan. Das Weibchen muss auf "Empfang" sein.


Störungen:


1: Ist das Männchen krank, sind die Farben blasser, der Gesang nicht so kräftig.

2: Ist das Weibchen abgelenkt (z.B. durch eine hungrige Katze) klappt die Kommunikation nicht.

Erstellt von Didaktik der Biologie, LMU München

Spezielle Sinnesleistungen

Sender: Vogelmännchen

Empfänger: Vogelweibchen

Code: Singfolge/Gefieder

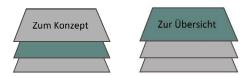
Übertragene Information:

Die Anwesenheit eines Beutetiers

Welche Information wird übermittelt? Die Anwesenheit eines Beutetiers

Erstellt von Didaktik der Biologie, LMU München

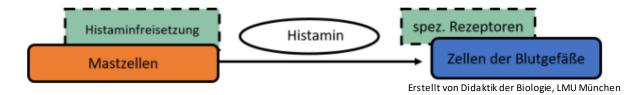
Voraussetzungen:


Die Maus muss zur ausreichenden Wärmeabgabe lebendig sein und eine normale Körpertemperatur aufweisen. Die Schlange benötigt ein intaktes Grubenorgan um die Wärmestrahlung zu empfangen

Störungen:

Ist die Maus geschwächt oder tot, fehlt ihr die ausreichende Körperwärme. Ist die Schlange durch andere Wärmestrahlung abgelenkt, kann sie die Maus nicht lokalisieren.

https://pixabay.com/de/photos/kettennatter-schlange-terrarium-491577/


Unspezifische Abwehr einer Infektion: Entzündungsreaktion

Sender: Mastzellen

Empfänger: Zellen der Blutgefäße

Code: Histamin

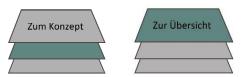
Welche Information wird übermittelt? Gewebe ist z.B. aufgrund von Verletzungen geschädigt

Übertragene Information:

Signal für beschädigtes Gewebe wie z.B. eine Verletzung

Voraussetzungen:

Mastzellen müssen bei Verletzung Histamin ausschütten. Spezielle Rezeptoren an den Zellen der Blutgefäße müssen intakt sein.


Störungen:

Mastzellen schütten kein Histamin aus.

Rezeptoren an den Zellen der Blutgefäße erkennen das Histamin nicht.

https://pixabay.com/de/photos/finger-blut-tropfen-bluttropfen-669008/

Struktur und Funktion

Häufig finden wir in der Biologie einen Zusammenhang zwischen einem strukturellen Merkmal und seiner Funktion. Dabei gilt es jeweils den konkreten Zusammenhang zwischen den strukturellen Merkmalen und deren Funktion zu suchen, dabei helfen folgende Leitfragen:

Leitfragen:

- (1) Was macht die betrachtete Struktur besonders aus?
- (2) Welche Funktion muss durch die betrachtete Struktur erfüllt werden?
- (3) Welche Eigenschaft der Struktur bewirkt die effektive Umsetzung der Funktion?
- (4) Was bewirkt eine Veränderung oder ein Weglassen dieser Strukturen?



Themen:

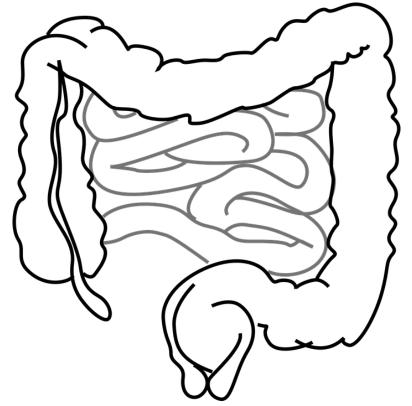
- 1. Aufbau der Dünndarmwand: Resorption: Prinzip der Oberflächenvergrößerung
- 2. <u>Angepasstheiten der Mundwerkzeuge bei Insekten an verschiedene</u>
 <u>Nahrungsquellen</u>
- 3. Hormone: Rezeptorbindung nach dem Schlüssel-Schloss-Prinzip
- 4. Atmung: Prinzip der Oberflächenvergrößerung
- 5. <u>Kiemen: Gegenstromprinzip bei Fischen</u>
- 6. <u>Bewegungsapparat: Aufbau der Wirbelsäule</u>

Aufbau der Dünndarmwand: Resorption: Prinzip der Oberflächenvergrößerung

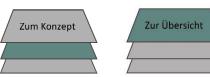
Besonderheit der Struktur:

Erhöhung der Oberfläche bei gleichbleibendem Volumen

Durch die Struktur erfüllte Funktion:


Erhöhung der Absorptionsrate von Nährstoffmonomere in den Körper

Eigenschaft der Struktur, die die effektive Umsetzung der Struktur bewirkt:


Die Faltung der Dünndarmwand und die darauf liegenden Darmzotten und Mikrovilli

Wirkung durch Veränderung/Weglassen der Struktur:

Die Nähstoffaufnahme wäre stark verlangsamt und verringert, die Verdauung würde zu viel Energie kosten und nicht genug Nährstoffe in den Körper gelangen.

https://pixabay.com/de/vectors/innereien-darm-magen-darm-293929/

Angepasstheiten der Mundwerkzeuge bei Insekten an verschiedene Nahrungsquellen

Besonderheit der Struktur:

Langes, einrollbares Saugrohr

Durch die Struktur erfüllte Funktion:

Gelangen an Nektar in langen Blütenkelchen

Eigenschaft der Struktur, die die effektive Umsetzung der Struktur bewirkt:

Formung des Rüssels aus beiden Unterkiefern, durch Chitinspangen rollt er sich in Ruhe ein. Durch lokale Druckerhöhung der Hämolymphe streckt er sich.

Wirkung durch Veränderung/Weglassen der Struktur:

Der Schmetterling kommt nicht mehr an die für ihn geeignete Nahrung heran.

https://pixabay.com/de/photos/schmetterling-falter-insekt-augen-376876/

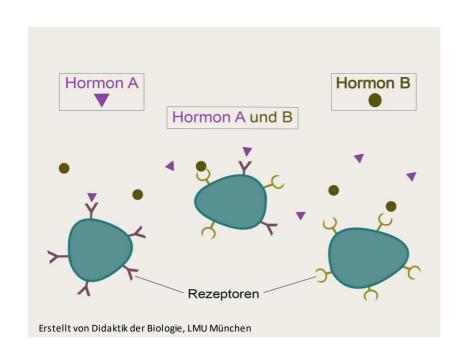
Hormone: Rezeptorbindung nach dem Schlüssel-Schloss-Prinzip

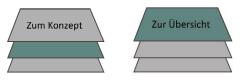
Besonderheit der Struktur:

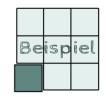
Zielzelle mit Erkennungsrezeptor

Durch die Struktur erfüllte Funktion:

Spezifische Bindung zwischen Hormon und Rezeptor


- → Signalübertragung
- → Aktivierung von Zellantworten


Eigenschaft der Struktur, die die effektive Umsetzung der Struktur bewirkt:


Zielzelle mit Erkennungsrezeptor, die reziproke Struktur zu Hormon aufweist

Wirkung durch Veränderung/Weglassen der Struktur:

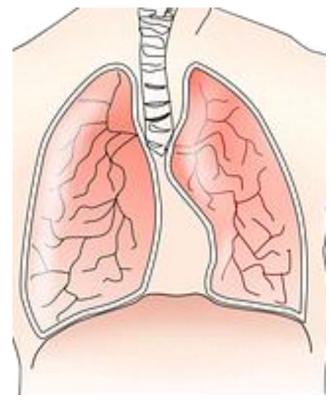
Kein Signalübertragung und keine Zellantwort Reine Stoffwechselvorgänge, etc.

Atmung: Prinzip der Oberflächenvergrößerung

Besonderheit der Struktur:

Oberflächenvergrößerung in der Lunge

Durch die Struktur erfüllte Funktion:


Erhöhung der Austauschfläche für Atemgase

Eigenschaft der Struktur, die die effektive Umsetzung der Struktur bewirkt:

Ständige Verzweigungen des Bronchialraums bis zu den Alveolen

Wirkung durch Veränderung/Weglassen der Struktur:

Die Menge der Atemgase ist ungenügend und wichtige Organe im Körper können nicht genug mit Sauerstoff versorgt werden.

https://pixabay.com/de/vectors/anatomie-karosserie-organe-biologie-31056/

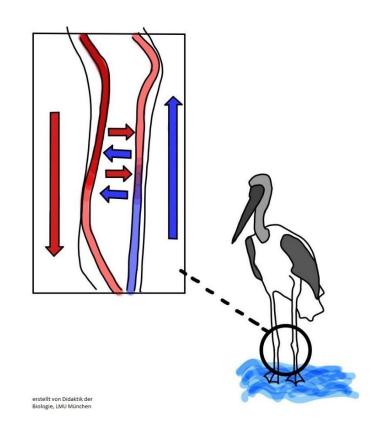
Kiemen: Gegenstromprinzip bei Fischen

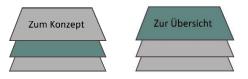
Besonderheit der Struktur:

Sauerstoffarmes Blut fließt in entgegengesetzte Richtung zum sauerstoffreichem Wasser

Durch die Struktur erfüllte Funktion:

Aufrechterhaltung des Diffusionsgradienten (Sauerstoff-Partialdruck-Gradient) über die gesamte Strecke; maximaler Stoffaustausch


Eigenschaft der Struktur, die die effektive Umsetzung der Struktur bewirkt:


Gegenläufige Anordnung der Kiemen zum Blutfluss

Wirkung durch Veränderung/Weglassen der Struktur:

Deutlich weniger Gasaustausch

 Weniger Sauerstoff gelangt ins Blut und somit zu lebenswichtigen Organen

Bewegungsapparat: Aufbau der Wirbelsäule

Besonderheit der Struktur:

Aufbau aus vielen Wirbelkörpern mit vielen Gelenken und Zwischenwirbelscheiben.

Durch die Struktur erfüllte Funktion:

Beweglichkeit in alle Richtungen und Stoßdämpfung

Eigenschaft der Struktur, die die effektive Umsetzung der Struktur bewirkt:

Kleinteiligkeit, viele Gelenke, elastische Zwischenwirbelscheiben

Wirkung durch Veränderung/Weglassen der Struktur:

z.B. Entzündung der Wirbelgelenke: zunehmende Versteifung



Bild von Robystarm auf Pixabay

Steuerung und Regelung

Der Begriff Regulation findet sich bei einer Fülle von Prozessen und Phänomenen wieder.

Dabei sind Regulationsprozesse auf allen Ebenen biologischer Systeme essentiell, um das jeweilige System (zumindest in gewissen Grenzen) stabil und funktionsfähig zu halten.

Welche
Bedeutung hat
die Regulation?

Wie ist der optimale Wert
bzw. der "optimale" Zustand?

Was verursacht
Störungen?

Weicht der aktuelle
Wert / Zustand ab?

Leitfragen:

- (1) Was wird geregelt? (Regelgröße)
- (2) Welche Bedeutung hat die Regulation (die Regelgröße) für den Körper?
- (3) Was ist die optimale Ausprägung der Regelgröße?
- (4) Wie reagiert das System auf Abweichungen?
- (5) Was kann die "Störungen" der Regelgröße verursachen?
- (6) Wie wird der aktuelle Wert gemessen?

Wie reagiert das System? bzw.

Wie wird geregelt?

Erstellt von Didaktik der Biologie, LMU München

Themen:

- 1. <u>Blutzuckerspiegelregulation beim Menschen</u>
- 2. <u>Thermoregulation bei Wirbeltieren</u>
- 3. Regulation des Atemgasgehalts im Blut beim Menschen
- 4. Adaptation des Auges

Blutzuckerspiegelregulation beim Menschen

Regelgröße:

Blutzuckerspiegel

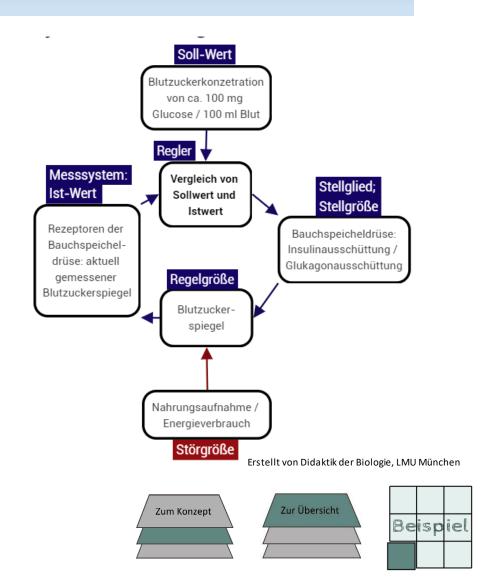
Bedeutung der Regelgröße für den Körper:

Regulation des Energielieferanten Glucose

Optimale Ausprägung der Regelgröße:

Blutzuckerkonzentration von ca. 100 mg Glucose / 100 ml Blut

Reaktion des Systems auf Abweichungen:


Bauchspeicheldrüse schüttet entweder Insulin oder Glukagon aus

Mögliche Störungen der Regelgröße:

Nahrungsaufnahme, Energieverbrauch

Messung des aktuellen Werts:

Durch Rezeptoren in der Bauchspeicheldrüse

Thermoregulation bei Wirbeltieren

Regelgröße:

Temperatur im Körperkern

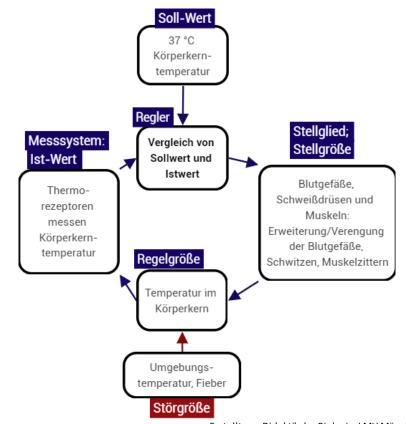
Bedeutung der Regelgröße für den Körper:

Stoffwechselprozesse im Körper laufen nur in bestimmtem Temperaturbereich ab

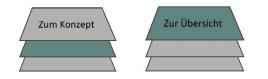
Optimale Ausprägung der Regelgröße:

37°C Körperkerntemperatur

Reaktion des Systems auf Abweichungen:


Bei Hitze: Erweiterung der Blutgefäße, Schwitzen Bei Kälte: Verengung der Blutgefäße, Muskelzittern

Mögliche Störungen der Regelgröße:


Umgebungstemperatur, Fieber

Messung des aktuellen Werts:

Durch Thermorezeptoren

Erstellt von Didaktik der Biologie, LMU München

Regulation des Atemgasgehalts im Blut beim Menschen

Regelgröße:

Sauerstoffgehalt im Blut

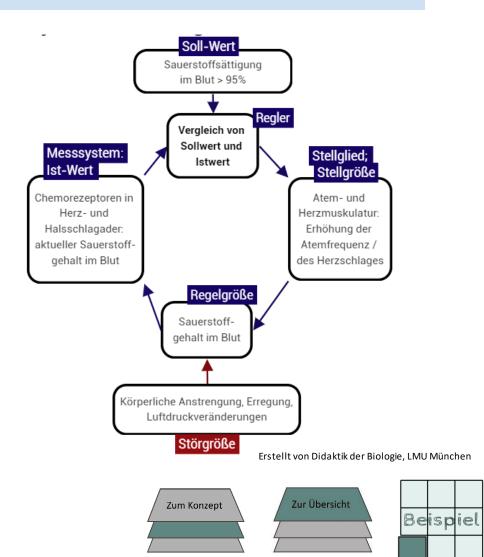
Bedeutung der Regelgröße auf den Körper:

Sauerstoff wichtig für Zellatmung

Optimale Ausprägung der Regelgröße:

Sauerstoffsättigung im Blut > 95%

Reaktion des Systems aus Abweichungen:


Erhöhung/Erniedrigung der Atemfrequenz/ des Herzschlages

Mögliche Störungen der Regelgröße:

Körperliche Anstrengung, Erregung, Luftdruckveränderungen

Messung des aktuellen Werts:

Durch Chemorezeptoren in Herz- und Halsschlagader

Adaptation des Auges

Regelgröße:

Ins Auge einfallende Lichtmenge

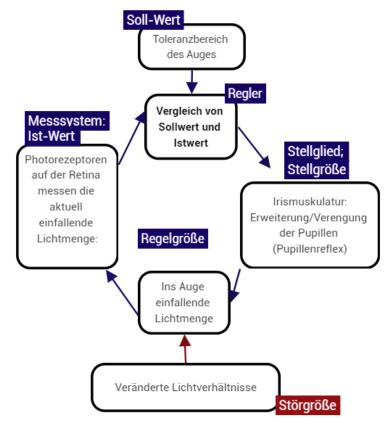
Bedeutung der Regelgröße auf den Körper:

Regulation der Lichtmenge zum Schutz des Auges, Gutes Abbild der Umgebung

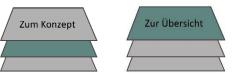
Optimale Ausprägung der Regelgröße:

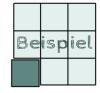
Toleranzbereich des Auges

Reaktion des Systems auf Abweichungen:


Erweiterung/Verengung der Pupillen (Pupillenreflex)

Mögliche Störungen der Regelgröße:


Veränderte Lichtverhältnisse


Messung des aktuellen Werts:

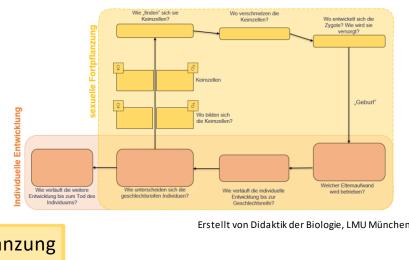
Durch Photorezeptoren auf der Retina

Erstellt von Didaktik der Biologie, LMU München

Individuelle und evolutionäre Entwicklung

Das Basiskonzept Entwicklung lässt sich weiter in zwei Unterkategorien aufteilen. Zunächst in die Fortpflanzung, die individuelle Entwicklung und die evolutionäre Entwicklung.

Individuelle Entwicklung (inkl. Reproduktion)


Evolutionäre Entwicklung

Individuelle Entwicklung (inkl. Reproduktion)

Die individuelle Entwicklung von Lebewesen kann durch einen Kreislauf dargestellt werden. Dabei muss die Reproduktion jedoch von der individuellen Entwicklung abgegrenzt werden.

Leitfragen:

1) Wo bilden sich die Keimzellen?

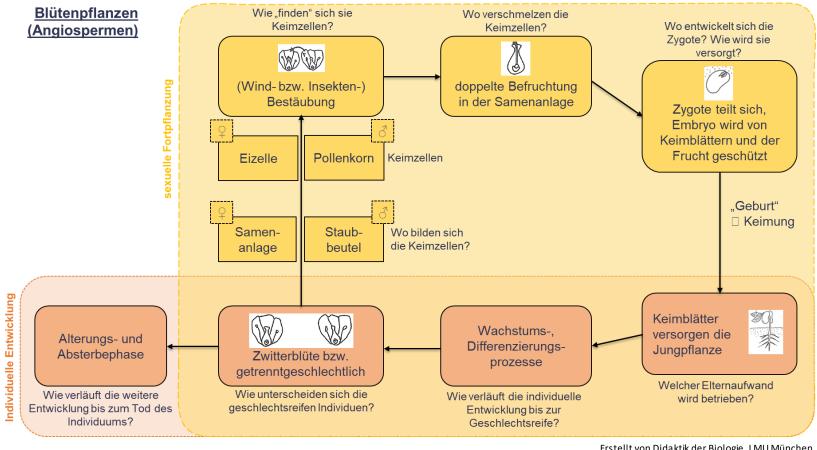
(2) Was sind die Keimzellen?

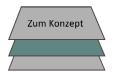
- (3) Wie "finden" sich sie Keimzellen?
- (4) Wo verschmelzen die Keimzellen?
- (5) Wo entwickelt sich die Zygote? Wie wird sie versorgt?
- (6) Welcher Elternaufwand wird betrieben?
- (7) Wie verläuft die individuelle Entwicklung bis zur Geschlechtsreife?
- (8) Wie unterscheiden sich die geschlechtsreifen Individuen?
- (9) Wie verläuft die weitere Entwicklung bis zum Tod des Individuums?

Fortpflanzung

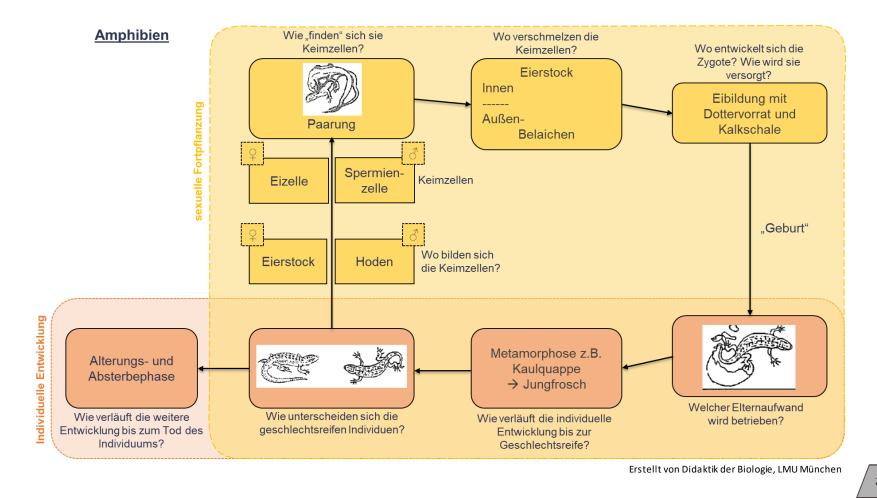
Individuelle Entwicklung

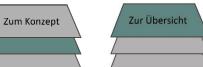
Themen:

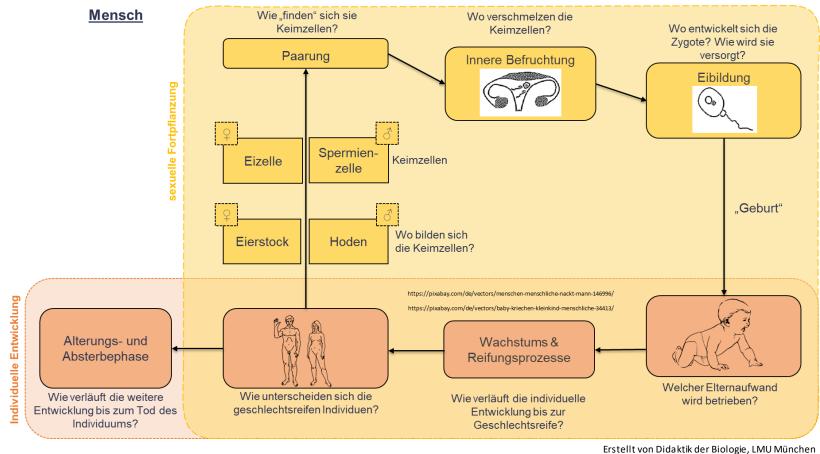

- 1. Fortpflanzung bei Samenpflanzen
- 2. Fortpflanzung von Amphibien
- 3. Fortpflanzung und Individualentwicklung des Menschen
- 4. Fortpflanzung von Insekten

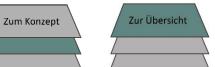


Fortpflanzung bei Samenpflanzen

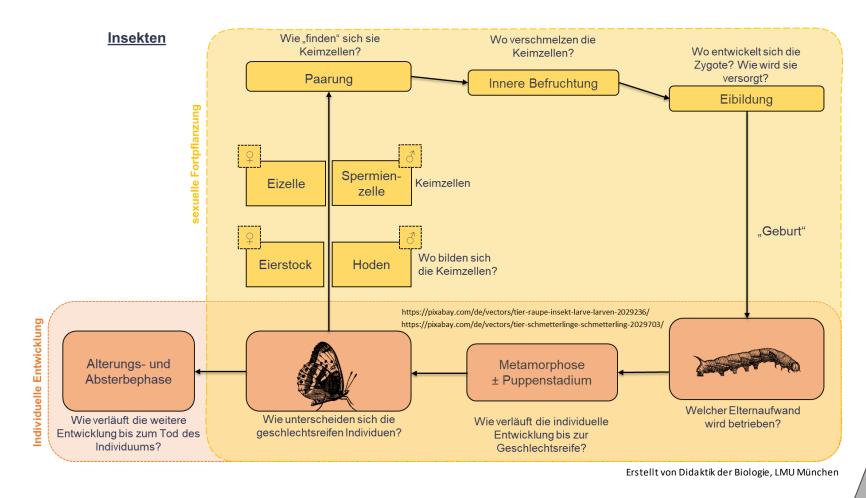

Erstellt von Didaktik der Biologie, LMU München

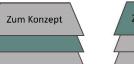



Fortpflanzung von Amphibien



Fortpflanzung und Individualentwicklung des Menschen





Fortpflanzung von Insekten

Evolutionäre Entwicklung

Leitfragen:

(1)

(2)

(3)

(4)

Themen:

- 1. Fortpflanzung bei Samenpflanzen
- 2. Fortpflanzung von Amphibien
- 3. Fortpflanzung und Individualentwicklung des Menschen
- 4. Fortpflanzung von Insekten
- 5. Mitose

Mitose

Stoff- und Energieumwandlung

Leitfragen:

(1)

(2)

(3)

(4)

Themen:

