„Machine learning is concerned with the question of how to construct computer programs that automatically improve with experience.” [Tom M. Mitchell, Machine Learning, 1997, McGraw-HillScience]
“Das maschinelle Lernen ist der Teilbereich der KI, der sich damit befasst, Computer Probleme lösen zu lassen, ohne sie dafür explizit zu programmieren.“ (Schacht, Lanquillon, 2019, S. 90)
Die Umkehrung des EVA-Prinzips
Normalerweise löst ein Computer Probleme, indem er eine Eingabe in genau definierten Schritten zu einer Ausgabe umwandelt. Diese Schritte gibt ein Programmierer in einer eindeutigen Handlungsvorschrift zur Lösung des Problems– dem sogenannten Algorithmus – vor. Man bezeichnet dies auch als EVA-Prinzip (Eingabe, Verarbeitung, Ausgabe) der Informationsverarbeitung.
Beim maschinellen Lernen wird dieses grundlegende Prinzip der Informationsverarbeitung umgedreht: Statt den Algorithmus zur Problemlösung vorzugeben, werden beim maschinellen Lernen Algorithmen angewendet, die vorgeben, wie Erfahrungen zum Lernen genutzt werden können. „Man gibt den Algorithmen also nicht vor, wie sie ein Problem zu lösen haben, sondern stattdessen, wie sie aus den in Form von Daten vorliegenden Erfahrungen lernen können, das Problem [..] zu lösen“ (Kersting et al., 2019, S. 90).
Trainingsdaten als Grundlage
Um dies zu realisieren, muss also ein großer Erfahrungsschatz in Form von digital verfügbaren Daten vorliegen. Dies sind die sogenannten Trainingsdaten, die aus Eingabedaten bestehen, zu denen die gewünschte Ausgabe bekannt ist. Stellen Sie sich beispielsweise vor, dass Sie ein Programm erstellen möchten, das lernen soll zu entscheiden, ob sich auf einem Bild eine Katze befindet. Als „Erfahrungsschatz“ liegt eine große Menge an beschrifteten Tierbildern vor, wobei die Beschriftung angibt, welches Tier auf dem jeweiligen Bild abgebildet ist. Die gewünschte Ausgabe ist also bei diesen Trainingsdaten schon vorher bekannt.
Trainingsphase - das eigentliche „Lernen”
In der sogenannten Trainingsphase wird nun ein Modell anhand der Trainingsdaten schrittweise so angepasst, dass es „lernt”, eine Eingabe in die gewünschte Ausgabe zu überführen. Solch ein Modell ist zum Beispiel ein neuronales Netz oder ein Entscheidungsbaum. „Somit können Computer durch maschinelles Lernen ihre eigenen Programme schreiben und sind nicht auf die Programmierung durch den Menschen angewiesen.“ (Schacht, Lanquillon, S. 91).
Jedoch ist der Begriff des „Lernens“ in diesem Kontext mit Vorsicht zu genießen: „Auch wenn der Begriff maschinelles Lernen dies suggeriert, ein echtes Lernen, wie wir es als Menschen kennen, findet in der Lernphase nicht statt.“ (Schacht, Lanquillon, S. 91). Deswegen spricht man in anderen Fachbereichen auch eher von der „Anpassung eines Modells an Daten“ oder dem „Schätzen der Parameter eines Modells“. Das Modell kann nur mit einer bestimmten Wahrscheinlichkeit vorhersagen, welche Ausgabe richtig ist. „Letzendlich handelt es sich um ein Optimierungsproblem, bei dem basierend auf den gegebenen Trainingsdaten und unter Berücksichtigung einer konkreten Aufgabe (Ziel), das beste oder ein möglichst gutes Modell […] gesucht wird.“ (Schacht, Lanquillon, S. 91f)